
Streaming and Scheduling DNN Inference Operations
Bedant Agarwal

bedantagarwal9@iitkgp.ac.in
Indian Institute of Technology

Kharagpur
Kharagpur, WB, India

Divyang Mittal
divyangmittal44@gmail.com
Indian Institute of Technology

Kharagpur
Kharagpur, WB, India

Jyoti Agarwal
jyotiagrawal851999@gmail.com
Indian Institute of Technology

Kharagpur
Kharagpur, WB, India

Jyotisman Das
jyotisman@iitkgp.ac.in

Indian Institute of Technology
Kharagpur

Kharagpur, WB, India

Prabhpreet Singh Sodhi
pprabh2007@hotmail.co.uk

Indian Institute of Technology
Kharagpur

Kharagpur, WB, India

Prakhar Sharma
prakhar6sharma@gmail.com
Indian Institute of Technology

Kharagpur
Kharagpur, WB, India

Prashant Ramnani
ramnani.prashant@gmail.com
Indian Institute of Technology

Kharagpur
Kharagpur, WB, India

Robin Babu Padamadan
robinb2009@gmail.com

Indian Institute of Technology
Kharagpur

Kharagpur, WB, India

ABSTRACT
Advancement in Deep Neural Network models is pressing upon the
requirement of efficient use of GPU resources. In this work we have
leveraged the fact that in CNN models, GPU utilization decreases
drastically in the final layers. Thereby, allowing the possibility of
running multiple GPU kernels simultaneously and concurrently.
We have implemented S3DNN, a paper which employs supervised
scheduling method and data fusion to improve the efficiency of
kernels and improves the overall throughput of the GPU.

CCS CONCEPTS
• Parallel Programming→CUDA; •Neural Networks→DNN
Pipelines.

KEYWORDS
Neural Networks, Parallel Programming, CUDA, CUDNN

ACM Reference Format:
Bedant Agarwal, Divyang Mittal, Jyoti Agarwal, Jyotisman Das, Prabh-
preet Singh Sodhi, Prakhar Sharma, Prashant Ramnani, and Robin Babu
Padamadan. 2018. Streaming and Scheduling DNN Inference Operations. In
Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018,
Woodstock, NY . ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 MOTIVATION
Graphic processing units (GPU) are nowadays being widely used
to accelerate the computation intensive programs that are data
parallel, in the form of GPGPU. One such example of these kind
of programs is Deep Neural Network(DNN). DNN involve large
amount of computation due to the vast amount of data involved
and their complex and large number of layers. Much of the recent
success of AI is backed by heavy use of DNN in backend to solve
tasks involving natural language processing, computer vision, rec-
ommendation systems, etc. The importance of these tasks has lead
to the development of large number of optimization techniques to
make these neural networks efficient and accurate. But there has
been little development with respect to scheduling of workloads on
GPU and improving the system level efficiency. Most of the DNN
pipelines employed to solve Computer Vision problems involve
use of CNN based architectures where the initial layers involve
convolution operation over a large image and the final layers use
feed forward networks. The number of parameters and operations
performed in these initial layers is significantly greater than those
in the last layers. As a result, it has been observed that many of
these pipelines follow a trend where they show gradual decrease in
kernel utilization in the final layers. This provides an opportunity
to run multiple kernels simultaneously.

Furthermore, the development of CNN models such as AlexNet
and YOLO have resulted in extraordinary performance on the task
of object recognition. Thus necessitating their use in an autonomous
car. From the vehicle perspective, we need to ensure minimal GPU
response time to allow comfortable functioning.

All this discussion has called attention upon development of
a scheduling system for GPU kernels which should be deadline
sensitive and should be able to pre-empt jobs if required. Major part
of this work is based upon the implementation of S3DNN [3] which
aims at achieving these goals and analysis of the results against
baseline scheduling policies and system without any scheduling.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY HP3 Project8, et al.

2 PROBLEM DEFINITION
The objective of this project is to develop scheduling algorithms
that simultaneously maximize concurrency-induced benefits and
real-time performance of multiple such DNN workloads used for
autonomous driving. Typically, the final layers of a DNN instance
exhibit a gradually decreased GPU resource utilization. This obser-
vation can be leveraged to concurrently schedule multiple kernel
operations in parallel using CUDA streams. To achieve this we have
primarily implemented the following paper - "s3DNN[3] Supervised
Streaming and Scheduling for GPU Accelerated Real Time DNN
Workloads".

The work has been divided into five parts. First, implementation
of the forward functions for a convolution layer with an option of
pooling and a fully connected layer. Second, creation of kernels so
that these functions can be called in a GPU environment. These
functions use CUDA streams to parallelize the execution. Third, im-
plementation of a baseline algorithm for kernel scheduling. Fourth,
the implementation of the supervised scheduling algorithm from
the s3DNN paper for effective scheduling. Finally, implementation
of an AlexNet[1] CNN pipeline. We also analysed results of this
pipeline.

3 METHODOLOGY
The first thing that we have implemented is forward pass for a
convolution layer. This was done using the CUDNN and CUBLAS
library provided by CUDA. These forward passes were then con-
verted into callable kernel modules. These modules copy the mem-
ory from host to device, execute the code at device and finally return
the results back to host. These kernels were employed to create

a custom CNN pipeline filled with convolution layers which was
used for profiling.

In order to use a CNN model, a pre-trained weight file is needed,
since we have implemented a customCNN pipeline randomweights
were used for this purpose. Training an accurate weight file is an
offline procedure that usually takes several days or weeks, done by
“learning” features from large scale image datasets. In this report, we
are not concerned with improving the training process, rather, we
focus on efficient execution of DNNs for real-time object detection.

As a baselinemodel, we first implemented a customCNN forward
pass without any optimisation. This model takes one frame as
input and produces the output for that single frame. We improved
this by implementing DNN forward passes using batched kernel
operations.

We then implemented a baseline scheduling policy using CUDA
streams to concurrently schedulemultiple DNN forward pass pipelines.
To enable concurrency, each DNN instance is mapped to a CUDA
stream. Total number of cuda streams are fixed a priori. Whenever
a new image arrives, a new thread is created to map it to one cuda
stream. Frames arriving in a continuous series, are mapped to a
particular stream in round robin fashion and inside a stream they
are processed sequentially. But different streams may be potentially
overlapped which is also the reason for performance boost.

Finally, we implemented the scheduling policy mentioned in the
paper - "S3DNN: Supervised Streaming and Scheduling for GPU-
Accelerated Real-Time DNN Workloads". The policy/algorithm is
described in detail in the figure shown below.

3.1 Scheduling Algorithm explained
GPU hardware is often constrained by either the hardware archi-
tecture or register/shared memory size. For example, GPUs with
compute capability 2.x can support up to eight blocks per SM, if
register/shared memory size is not the bottleneck.

In the Algortihm we have defined a few variables tbRatio - met-
ric to measure the proportion of the demanded thread blocks by a

Streaming and Scheduling DNN Inference Operations Woodstock ’18, June 03–05, 2018, Woodstock, NY

kernel to the total number of thread blocks provided by the GPU
hardware. Q : queue of kernels to be scheduled. G : any subset of
kernels that can execute concurrently. C : the subset of kernels
with the highest priority in the scheduling queue. There are two
major functions defined in Algorithm 2: Enqueue and Dequeue. The
algorithm needs three input data structures, including a scheduling
queue (denoted by Q), any subset of kernels that can execute con-
currently, and the subset of kernels with the highest priority in the
scheduling queue . Function Enqueue is invoked at kernel arrivals
and completions, which sorts the released kernels in Q using LSF
(Lines 2-5). It first updates the remaining slacks for each kernel (line
3), and then inserts each newly arrived kernel k into Q according to
LSF (Lines 4-5). Dequeue is not invoked immediately after a kernel’s
(e.g. k0’s) completion, but S3DNN delays this invocation a little bit
until k0’s successor kernel is pushed into the queue. It first updates
slacks for kernels in the scheduling queue (Line 7), and then checks
if G is empty (Line 8). If G is not empty, then the scheduler directly
submits kernels within G for execution (Line 9). Next, the kernel h
at the head of the scheduling queue is pushed into G (Lines 10-11).
Then the scheduler checks whether h can fully occupy the GPU
by calculating its tbRatio. If tbRatio of h is smaller than 1 (Line 12),
indicating it may be concurrently executed with other kernels, then
the scheduler will seek to put more kernels in Q whose tbRatio is
also less than 1 (Lines 13- 15); else h is directly submitted to GPU
device for execution (Line 16). After all potential small kernels in
Q are merged into G, the scheduler checks whether the tbRatio of
G is still less than 1 (Line 17). If so, the scheduler looks ahead the
successor kernels of the ones residing in Q in the order of priorities,

in order to identify any such kernels that have not been released
but with tbRatio < 1 (Lines 18-22). Finally, kernels placed in G will
be sent to C, which will be further submitted to GPU for execution
(Lines 24-25).

From the implementation perspective, A custom class object is
created for each pipeline to be executed. This object stores the state
of this pipeline containing the info such as numLayers, deadline to
be met, threadBlock ratio for the current layer, stream of this layer,
cublas handler and cudnn handler. A global vector is maintained
for the list of process G. Finally a priority queue is maintained for
all the submitted kernels which are sorted by the least slack first.

4 OPTIMIZATIONS PERFORMED
4.1 CUDA streams
All CUDA calls are either synchronous or asynchronous w.r.t the
host. Kernel Launches are asynchronous and automatically overlap
with host. A stream is a queue of device work. The host places
work in the queue and continues on immediately. Device schedules
work from streams when resources are free CUDA operations are
placed within a stream. In this way, cuda streams enable concurrent
execution of different kernels thereby ensuring efficient utilization
of GPU device.

4.2 Memory operations
There are three types of memory

• Device Memory - Allocated using cudaMalloc
• Pageable Host Memory - Default allocation (e.g. malloc etc).
This Can be paged in and out by the OS

• Pinned (Page-Locked) HostMemory - Allocated using special
allocators .This cannot be paged out by the OS

The cudaMemcpy() places transfer into the default stream thus
making the process synchronous i.e must complete prior to return-
ing. In contrast to that we have used cudaMemcpyAsync(, &stream).
This places transfers into the given stream and returns immediately
and thus enables concurrency. To ensure all the memory commands
are concurrent, We need to follow all these conditions -

• Thememory copy transfer is placed in a different non-default
stream.

• Host uses only pinned memory for transferable memories.
• The asynchronous API cudaMemcpyAsync is used
• There should be no other memory copy occurring in the
same direction at the same time.

4.3 Batched Operations
We have implemented batched operations using functions like
cublasSgemmBatched available in cuBLAS and cuDNN libraries.
In the batched implementation, a batch of frames are passed to
the model and output for all such frames are produced at once. In
particular, the optimized batched matrix multiplications can sub-
stantially outperform the non-batched version and reach around
84.8 % of the performance upper bound.

5 RESULTS ABLATION STUDY
We performed all our experiments using Google Colab. The virtual
machine assigned to us consisted of Nvidia tesla T4, which is based

Woodstock ’18, June 03–05, 2018, Woodstock, NY HP3 Project8, et al.

Batch-sizes 2 4 8 16

Cuda Streaming

1 streams 1150(ms) 1300(ms) 1570(ms) 2135(ms)
4 streams 1157(ms) 1287(ms) 1590(ms) 2188(ms)

Supervised Streaming

1 streams 88(ms) 172(ms) 325(ms) 631(ms)
4 streams 92(ms) 170(ms) 327(ms) 636(ms)

Table 1: Performance of different methods for various different batch-sizes

on the latest turing micro-architecture and features 2560 cuda cores,
320 tensor cores and 16 GB of DDR6 memory, and an Intel Xeon
2.2 Ghz with 2 cores and support for 2 threads per core and 13 GB
of RAM. We compare our implemented S3DNN algorithm to the
baseline code with no concurrency. We also compared the same
method with concurrency achieved through CUDA-streams. For
the DNN we used AlexNet as the architecture.

We evaluate the performance of different methods by comparing
their runtime. For each experiment we ran the batch 4 different
times and report the total time taken as the performance of the
corresponding method. The Results for different experiments are
reported in the table below.

One interesting observation we had was that having concur-
rency using Nvidia streams had no effect on the runtime of both
algorithms. We suspect this difference in results from the original
paper is caused by the choice of our backend DNN architecture.
As AlexNet has more number of parameters than Yolo[2] and con-
sists of majorly Convolution layers only. Since, the speedup caused
by the concurrency is the result of scheduling the linear layers
together, thus these results become more intuitive.

Even though CUDA doesn’t provide functionality for checking
the memory usage of program during kernel execution but running
commands such as "nvidia-smi" parallely in backend allowed us to
have a rough idea about the percentage of GPU used. We observed
that using the Supervised streaming and scheduling not only results
in drastic reduction in runtime but it also results in more GPU
utilisation.

6 CONTRIBUTIONS
Task 1 - Implementation of CNN pipelines - Jyoti Aggarwal, Jy-
otisman Das
Task 2 - Baseline scheduling policy using CUDA streams - Prashant
Ramnani, Robin Babu P., Prabpreet Singh Sodhi
Task 3 - Scheduling policy - Divy ang Mittal, Prakhar Sharma, Be-
dant Aggarwal

REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1 (Lake
Tahoe, Nevada) (NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

[2] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs.CV]

[3] H. Zhou, Soroush Bateni, and Cong Liu. 2018. S3𝐷𝑁𝑁 :
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔𝑎𝑛𝑑𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑓 𝑜𝑟𝐺𝑃𝑈 − 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝑅𝑒𝑎𝑙 −

𝑇𝑖𝑚𝑒𝐷𝑁𝑁𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠.2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)(2018), 190−
−201.

https://arxiv.org/abs/1804.02767

	Abstract
	1 Motivation
	2 Problem Definition
	3 Methodology
	3.1 Scheduling Algorithm explained

	4 Optimizations performed
	4.1 CUDA streams
	4.2 Memory operations
	4.3 Batched Operations

	5 Results Ablation Study
	6 Contributions
	References

