
Design of WebRTC based Real Time Streaming System

BTP-1 report submitted to

Indian Institute of Technology Kharagpur

in partial fulfilment for the award of the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Divyang Mittal

(17CS10012)

Under the supervision of

Prof. Sandip Chakraborty

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Autumn Semester, 2020-21

Nov 23, 2020

DECLARATION

I certify that

(a) The work contained in this report has been done by me under the guidance of

my supervisor.

(b) The work has not been submitted to any other Institute for any degree or

diploma.

(c) I have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

(d) Whenever I have used materials (data, theoretical analysis, figures, and text)

from other sources, I have given due credit to them by citing them in the text

of the thesis and giving their details in the references. Further, I have taken

permission from the copyright owners of the sources, whenever necessary.

Date: Nov 23, 2020 (Divyang Mittal)

Place: Kharagpur (17CS10012)

i

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

KHARAGPUR - 721302, INDIA

CERTIFICATE

This is to certify that the project report entitled “Design of WebRTC based Real

Time Streaming System” submitted by Divyang Mittal (Roll No. 17CS10012)

to Indian Institute of Technology Kharagpur towards partial fulfilment of require-

ments for the award of degree of Bachelor of Technology in Computer Science and

Engineering is a record of bona fide work carried out by him under my supervision

and guidance during Autumn Semester, 2020-21.

Prof. Sandip Chakraborty

Date: Nov 23, 2020 Department of Computer Science and

Engineering
Place: Kharagpur Indian Institute of Technology Kharagpur

Kharagpur - 721302, India

ii

http://www.cse.iitkgp.ac.in
http://www.cse.iitkgp.ac.in
http://www.iitkgp.ac.in

Abstract

Name of the student: Divyang Mittal Roll No: 17CS10012

Degree for which submitted: Bachelor of Technology

Department: Department of Computer Science and Engineering

Thesis title: Design of WebRTC based Real Time Streaming System

Thesis supervisor: Prof. Sandip Chakraborty

Month and year of thesis submission: Nov 23, 2020

Real-Time communication has advanced leaps and bounds in past few years. Since

a long time, Voice over Internet protocol is the most widely used protocol for voice

communication. Over the years, We have come across development of video com-

munication as well. Video communication spans over many domains such as video

calling, video conference, live streams, etc.

In this work, We look at some of the most widely used methods to build a video

conferencing system. We analyze their performance to identify their particular ad-

vantages and disadvantages. We show the use of WebRTC in development of these

systems. Finally we propose our own design to build a video conferencing system.

iii

Acknowledgements

I would like to thank my supervisor Dr. Sandip Chakraborty, assistant professor,

dept. of CSE, IIT Kharagpur for his valuable guidance and support all throughout

the course of my B.Tech project work.

I would like to thank Mr Bishakh Chandra Ghosh, PhD Scholar, dept. of CSE, IIT

Kharagpur and Mr. Abhijit Mondal, PhD Scholar, dept. of CSE, IIT Kharagpur,

who have helped in this project. Without their tremendous support, this work might

not be finished.

I would like to express my gratitude to all faculty members of Department of Com-

puter Science and Engineering for guiding us and providing knowledge in various

subjects over the past four years.

Finally, my deep and sincere gratitude to my family and friends in IIT Kharagpur

for their continuous love and support.

iv

Contents

Declaration i

Certificate ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . 1

1.2 Case study of video conferencing systems 2

1.3 Problem Statement . 3

2 WebRTC 4

2.1 What is WebRTC? . 4

2.2 Working . 4

2.2.1 Signaling server . 5

2.2.2 NAT Traversal . 5

2.3 Advantages and Disadvantages . 7

2.3.1 Advantages . 7

2.3.2 Disadvantages . 8

3 Design of Video conferencing systems 9

3.1 Mesh Topology . 9

3.2 Star Topology . 10

3.3 Proposed design . 12

v

Contents vi

4 Evaluation and Results 14

4.1 Evaluation . 14

4.2 Analysis . 15

4.2.1 Mesh Topology . 15

4.2.2 Star Topology with MCU . 15

4.2.3 Star Topology with SFU . 15

5 Conclusion and Future Work 17

5.1 Conclusion . 17

5.2 Future Scope . 18

Bibliography 19

List of Figures

2.1 A p2p connection with a signaling server 6

2.2 A p2p connection using STUN server (6) 7

3.1 A full mesh network of 4 peers . 10

3.2 A star network of 4 peers . 10

3.3 A supernode architecture with mesh network among the supernodes.
Here the larger circle denote the supernodes. 12

vii

List of Tables

4.1 Network usage for all three methodologies at each browser in mbps . 14

4.2 Comparison of features . 16

viii

Abbreviations

QoE Quality of Experience

NAT Network Address Translation

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relays arounf NAT

MCU Multipoint Controller Unit

SFU Selective Forwarding Unit

ix

Chapter 1

Introduction

1.1 Motivation

Since the advent of COVID-19, We all have been constraint to our homes. The

necessity of carrying on our work, education, social lives, etc has lead to a tremendous

increase in the use of video conferencing systems. As reported by zoom, They had

10 million daily users in December 2019 which increased to 300 million daily users

in April 2020 at the beginning of lockdown in various countries. Video conferencing

involves a large amount of data and CPU usage. This exhibits how ”efficient” video

conferencing systems are the need of the hour.

The security provided by these video conferencing systems concerning handling user

data has also come under scrutiny. Most of these systems use a server-client archi-

tecture due to which these systems have access to the user’s data. This is a violation

of user’s privacy as their data might be used without their consent. This calls for a

decentralized network architecture to ensure security.

1

Chapter 1. Introduction 2

1.2 Case study of video conferencing systems

In this section, We show the working of a few popular conferencing tools available to

us. We want to identify the methods used by these systems to make them scalable

and efficient. As we understand the internal architecture of these systems is not

public, We only cover partial architecture information.

1. Skype

Video chat in Skype started as a peer-to-peer server-client architecture. Hence

the name ”sky peer-to-peer”. At that time it used supernodes to store the

skype user directory information. An authorized user with a good network

connection was used a supernode. After identifying the required users a peer-

to-peer connection was created. Later, Microsoft started storing these supern-

odes in their own data centers. This helped in increasing the number of users

who can simultaneously join a meeting. But lead to the above-mentioned

problem of violation of user’s privacy.

2. Zoom

Zoom is by far the most popular of these systems. It has the maximum capacity

of the number of users among all systems. Zoom has 9 data centers all over the

world to handle its traffic. Zoom has been built from the ground up to optimize

video conferencing. One such example is Zoom uses the SVC (Scalable Video

Codec) codec over AVC which is used in most of the systems. In AVC, multiple

streams need to be sent to send multiple bitrates whereas SVC uses multiple

layers in a single stream.

3. Google Meet

Google Meet uses WebRTC protocol in its architecture. Due to this, a person

can join a meeting without any external plugins. One major advantage for

google meet is it enjoys the freedom provided by chrome as it is able to modify

the browser to suit its needs.

Chapter 1. Introduction 3

1.3 Problem Statement

Building a video conferencing system which satisfies the following criteria

1. decentralized system to ensure user privacy

2. minimization of network usage in the system

3. QoE maximization to the end user

Chapter 2

WebRTC

2.1 What is WebRTC?

Web Real-time communication better known as WebRTC is a peer-2-peer protocol

for browsers and mobile applications. This means it allows browsers to directly

connect and share media information such as audio and video in real-time. This

helps to remove the need for any external plugins in the system. It is free and open-

source allowing us easy access. WebRTC is developed and standardized through

W3C and the Internet Engineering Task Force IETF together with industry leaders

like Google and Apple. Since this is a peer-2-peer protocol, We have used this in

building our own video conferencing system.

2.2 Working

Now we look into the process involved in the creation of a single p2p connection

using WebRTC. The sharing of media resources is p2p in WebRTC but we require

a central server to create this connection. This is done with the help of a signaling

server.

4

Chapter 2. Web Real-time communication 5

2.2.1 Signaling server

The tasks of signaling servers involve the exchange of messages such as a connection

request, error messages, etc. All this information about the media (type and resolu-

tion), network connection information, etc is transferred using Session Description

Protocol(SDP). This is used along with Interactive connection establishment(ICE)

to establish a connection. An architecture of peers with a signaling server is shown

in figure 2.1. To start a connection, the peers share their respective SDP’s with

other peers using a signaling server. The algorithm for sharing of these SDP’s looks

like the following:

1. A peer creates a new RTCPeerConnection using its media streams which we

can get using getUserMedia() API.

2. The peer sends a SDP offer using this newly created RTCPeerConnection

object through the signaling server and saves it in its own localDescription

variable.

3. The receiver of the sdp offer saves it in the remoteDescription and generates

it’s own SDP answer, stores it in its own localDescription and sends the answer

to the sender.

4. The initial peer finally saves it in its own local description establishing the

connection.

After this step signaling server is only used to send text information between

the peers such as error messages.

2.2.2 NAT Traversal

Although, the sharing of SDP packets helps in the exchange of network information

between peers. The peers might still not be able to communicate with each other.

Chapter 2. Web Real-time communication 6

Figure 2.1: A p2p connection with a signaling server

There is a case that a client is unable to identify it’s own IP address when it is

behind a network address translation(NAT). We have to employ certain techniques

to identify the right IP in this case. These techniques are known as NAT traversal.

One of the techniques involves the use of STUN servers. A browser may connect to

this STUN server. The architecture for the p2p network using stun server has been

shown in figure 2.2. These STUN servers then return potential candidates for the

browser’s IP address, known as ICE candidates. These candidates are passed to the

peers using the signaling channel. After the exchange of SDP, each browser(peer)

tries out the various candidates in the list to identify the right IP address.

The algorithm for identifying the right candidate involves selecting a candidate from

the list and sending it to the stun server which consequently tries to connect with

the browser. If an answer is received by the browser, We identify it as the right

candidate.

The STUN server may not be enough in case of more secure networks. In that case,

a TURN server is employed. A TURN server creates a public IP address and port

for the browser. This acts as a relay address that forwards all the packets received

and send by this browser. An additional feature of TURN servers is that it allows

us to use TCP instead of the usual UDP used in WebRTC.

Chapter 2. Web Real-time communication 7

Figure 2.2: A p2p connection using STUN server (6)

A duplex connection is established between the peers once the sdp offers have been

exchanged and ice candidates are resolved. After this both peers can add media

streams in the connection to share their media content. Next we look into the

WebRTC API.

2.3 Advantages and Disadvantages

We have compiled the various advantages and disadvantages of WebRTC to justify

our selection of this protocol.

2.3.1 Advantages

1. Provides getUserMedia() API to access the various media streams from input

through webcam, microphone and screen sharing.

2. Open source and has a good amount of documentation.

Chapter 2. Web Real-time communication 8

3. Automatically adjusts the quality of video and audio with the bandwidth avail-

able to it.

4. Provides low latency since the media streams are shared over p2p network.

5. No additional plugins or extension need to be developed. Meetings can be

joined directly from browser.

6. High level of security: all connections are protected (HTTPS) and encrypted

(SRTP).

2.3.2 Disadvantages

1. Compatible with very few browsers, Moreover works with only some versions

of specific browsers.

2. Custom signaling server needs to be built since there is no inbuilt signaling

system available.

Since our main task is to study the various elements involved in the development

of video conferencing systems. Compatibility does not matter to us as long as the

system works well with few browsers. We built a signaling server to overcome the

other disadvantage.

Chapter 3

Design of Video conferencing

systems

In this chapter, We will show our method to scale a video conferencing system to

accommodate more peers. We have shown how two peers are connected. All the

peers in a meeting have to be organized into a network topology to share their

media elements with each other. We will first show two implemented methods, an

industrially accepted solution, and finally our proposed algorithm.

3.1 Mesh Topology

A simple approach is to make a complete mesh of all peers. This means all the peers

are connected to one another as shown in figure 3.1. If there are N nodes, each node

will receive N-1 video and audio streams and there will be N*(N-1) peer connections

in the network. All of the incoming and outgoing streams have to be decrypted and

encrypted respectively. This requires a huge computation power and may not be

feasible as the number of peers in the network increase. Also since we are receiving

N-1 video streams, network usage is highest in this case.

9

Chapter 3. Design of Video conferencing systems 10

Figure 3.1: A full mesh network of 4 peers

3.2 Star Topology

A much better method is to use a star topology. In this case, all the peers are only

connected to a centrally located server as shown in figure 3.2. In this manner, Each

peer has only one connection summing to N*2 total connections in the network.

Hence, All the streams go through the server that acts as a gateway. Each peer has

to send its stream, only to the server. But, what about the other way round? Each

peer still has to receive the streams of all the users. To overcome this problem, We

look at two different methods.

Figure 3.2: A star network of 4 peers

1. Multipoint Control Unit

A Multipoint Control Unit (MCU) is a combination of a network gateway and

media processing unit. An MCU receives the streams of all the users decrypts

Chapter 3. Design of Video conferencing systems 11

them, combines them into a single media stream, encrypts it, and sends this

single stream to all the users. In terms of network utilization, this is the best

solution as the number of streams transferred for an N node server is 2*N.

But, this method also has its own caveats. The mixing of streams is an added

step thereby it requires time that increases the latency. Also, the end stream

received is a single stream which is a major drawback as it provides low QoE.

2. Selective Forwarding Unit

Selective Forwarding Unit (SFU) is the most accepted solution in most of the

systems today. This has a similar architecture to MCU with the central server

in this case being an SFU. An SFU works similar to MCU in a way as a gateway.

But, it does not mix these streams. Instead, it changes the SDP information

of these streams according to the network capability of the receiver and sends

it to them. This acts as an adaptive algorithm that keeps adjusting the quality

of the stream as the number of streams sent to a user changes. Hence, this

method provides a good scalable solution with low network usage.

Most of the systems have tweaked this method into creating optimized solu-

tions. One such system jitsi-meet (5) optimizes the network usage by sending

the streams only from last-n users that have been sending audio. This is done

by checking the SDP information for audio streams to store these stats.

Overall, star topology with selective forwarding seems the most viable solution as it

reduces network usage, is scalable, and maintains good QoE. This has a major flaw

though, The use of an external server violates the user privacy that we wanted. We

have proposed a solution that uses the functionalities of some of these systems to

design a new system.

Chapter 3. Design of Video conferencing systems 12

3.3 Proposed design

We have used the idea of supernodes in building a new network topology for our

video conferencing system. Supernodes in network topology is a fairly popular idea.

This architecture involves the creation of a network of subtrees as shown in figure

3.3. We also use the fact that we can mutate the SDP packets to change the quality

of media elements as the number of peers in the network change.

Figure 3.3: A supernode architecture with mesh network among the supernodes.
Here the larger circle denote the supernodes.

In this method, We identify certain peers in a meeting as supernodes. The network

is then converted into a supernode topology by connecting the non-supernodes to

exactly one of the supernodes. All these supernodes create a mesh among themselves

to complete the connection. The supernodes have the following functions-

1. Act as a gateway for all the peer nodes connected to it.

2. Combine the media streams of connected peers with it’s own stream to form

a single stream.

These supernodes are deriving from the functionalities of MCU to create combined

streams. Since this is happening at a user’s browser, it remains a decentralized

network. We have not yet discussed how these supernodes will get selected. As

shown in (4), Supernode selection must follow some distribution criteria as follows-

Chapter 3. Design of Video conferencing systems 13

1. All the non supernodes must have a low latency access to one of the supernodes.

2. These supernodes must be evenly distributed throughout our network.

3. To meet the application specific performance requirements, some pre-specified

ration of supernodes per nodes must be maintained.

4. Supernodes should not serve more than a pre-specified amount of non-supernodes.

The supernode selection problem is a widely known problem with many possible

solutions as shown in (4). In our design, We simply use the signaling network

to select the supernodes based on availability of bandwidth and CPU resources.

We have selected only these two parameters as supernodes form a network among

themselves and hence have a much higher bandwidth and CPU requirements. We

have ignored latency as this system will not work for a large number of peers as

depicted in our results for a mesh network.

There is one other modification at each node, They modify their SDP contents to

change the media quality before sending it to a supernode. This has been derived

from the SFU functionality to adjust the media quality with increasing connections.

The system also needs to be fault-tolerant as there are scenarios when a supernode

leaves a system. In this case, the signaling server tries to accommodate these nodes

to an existing supernode whose load criteria have not been exceeded. Otherwise, a

new supernode is created among the remaining nodes and all the other nodes are

assigned to it.

Chapter 4

Evaluation and Results

4.1 Evaluation

We have built our web applications using JavaScript and nodejs to test the various

methodologies. These tests were run on a single pc with specifications i5 processor,

8GB memory. The server was hosted on an ubuntu system with 8 GB memory,

2 core processors, and 160 gb ssd disk. We have used kurento as our MCU and

Jitsi-videobrige as the SFU to test the star topologies. We have been unable to

completely implement our design and it is to be done in future work.

Table 4.1 shows a comparison of the network usages when the number of members

was varied for each of the methodologies.

Table 4.1: Network usage for all three methodologies at each browser in mbps

Number of participants 2 3 4 5
Mesh 2.2 5.6 - -
MCU 2.9 2.7 3.2 2.7
SFU 2.8 5.4 7.2 6.4

14

Chapter 4. Evaluation and results 15

4.2 Analysis

4.2.1 Mesh Topology

The network was unable to handle cases with a number of members more than

three. Even for fewer members, the CPU and memory usage was considerably high.

In conclusion, due to being directly connected mesh topology theoretically provides

the least latency solution. But our results show that this is not scalable and thus

cannot be used.

4.2.2 Star Topology with MCU

This network shows near-constant network usage which should be true theoretically

speaking. As the number of streams to be uploaded and downloaded remains the

same. Though, This faces the problem of less QoE and maybe not be suitable for

all.

4.2.3 Star Topology with SFU

Initially, this was slightly worse than mesh topology but it continues to work even

on increasing the number of members. Additionally, on increase in the number

of members, its network usage does not grow exponentially as opposed to mesh

topology.

Table 4.2 shows the comparison of features in these networks based on our analysis.

Chapter 4. Evaluation and results 16

Table 4.2: Comparison of features

Feature Mesh MCU SFU
Scalability NO YES YES

QoE NO NO YES
Decentralized YES NO NO

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this report, we have seen the working of various WebRTC applications in the video

conference domain. We showed the various topologies that can be used and their

individual advantages and disadvantages. We have to select a topology based on

our requirements. A peer-2-peer topology may not be feasible unless the conference

size is very small.

An MCU solution can be used if only one or few attendees are presenting at a time

due to the low network usage even with a large number of attendees. SFU is the

best method among these due to its high scalability and QoE.

Theoretically speaking, Our design is not highly scalable it is an improvement over

the existing peer-2-peer network in a bid to maximize the efficiency of a decentralized

network.

17

Chapter 5. Conclusion and Future Works 18

5.2 Future Scope

The first step for us shall be the implementation of our design. As we will be

able to better understand itss performance in a real time scenario. There are also

some flaws in our design as the supernode selection algorithm is not optimal. It is

highly susceptible to dynamically changing networks. We have ignored the latency

parameter and this algorithm does not seem fair to the supernodes as they have a

much higher load than their counterparts.

Bibliography

[1] Real-time communication for the web. (2020, November 15) Retrieved from

https://webrtc.org/

[2] Kurento documentation. (2020, November 15) Retrieved from

https://www.kurento.org/documentation

[3] Jitsi Meet Handbook. (2020, November 15) Retrieved from

https://jitsi.github.io/handbook/docs/intro

[4] Virginia Lo, Dayi Zhou, Yuhong Liu, Chris GauthierDickey, Jun Li. ”Scalable

Supernode Selection in Peer-to-Peer Overlay Networks”, IEEE 2005.

[5] Boris Grozev, Lyubomir Marinov, Varun Singh, and Emil Ivov. ”Last

N: relevance-based selectivity for forwarding video in multimedia confer-

ences”,NOSSDAV 2015.

[6] STUN, TURN, and ICE. (2020, November 15) Retrieved from

https://anyconnect.com/stun-turn-ice/

19

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Case study of video conferencing systems
	1.3 Problem Statement

	2 WebRTC
	2.1 What is WebRTC?
	2.2 Working
	2.2.1 Signaling server
	2.2.2 NAT Traversal

	2.3 Advantages and Disadvantages
	2.3.1 Advantages
	2.3.2 Disadvantages

	3 Design of Video conferencing systems
	3.1 Mesh Topology
	3.2 Star Topology
	3.3 Proposed design

	4 Evaluation and Results
	4.1 Evaluation
	4.2 Analysis
	4.2.1 Mesh Topology
	4.2.2 Star Topology with MCU
	4.2.3 Star Topology with SFU

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Scope

	Bibliography

